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For a crystallographic group ~ acting on an n-dimensional Euclidean space we consider 
the ~fi-invariant linear elliptic differential operator P with constant coefficients and tO it the ~- 
automorphic eigenvalue problem P[~u] + #~ = 0. N(A) is the number of all eigenvalues # smal- 
ler than or equal to the "frequency bound" ~q (q: order of P). Earlier we found the asymptotic 
estimation N(A) ,-~ co • A n + cl • A ~-I (co, cl: certain volumina). Furthermore, N(A) was inter- 
preted as the number of so-called principal classes of principal lattice vectors within a convex 
domain. In this paper we demonstrate these results for the case n = 2 for two representative 
crystallographic groups ~ and the assigned lattices. Above all we demonstrate a counting 
method for an exact estimation ofN(A) ifA is not too big. In an analogous way we can treat all 
the 230 space groups of crystallography. It will be seen that these applications are brought 
about by the so-called principal vectors of these lattices. 

O. Introduct ion  

T o  fo l low this pape r  the cons ide ra t i on  o f  Gi in the r ' s  [9] an d  m y  pub l i ca t ion  [3] 
is r e c o m m e n d a b l e  bu t  is no t  a condi t ion .  T h e  t h eo ry  o f  these publ ica t ions  is 
r epe a t e d  here  pa r t l y  bu t  the ac tua l  a im is to  d e m o n s t r a t e  this t h eo ry  by  crys ta l lo-  
g raph ic  g roups .  

Le t  @ be a p r o p e r l y  d i scon t inuous  g roup  o f  aff ine t r a n s f o r m a t i o n s  act ing on  an  
n -d imens iona l  aff ine space ~ .  The  inva r i an t  su b g ro u b  ff c ~5 o f  all t r ans l a t ion  ele- 
men t s  o f  ~ defines a l a t t i c e / "  ~ f17. T o / "  is ass igned the  dua l  la t t ice  F* in the dua l  
space  f17* to  ~ .  GiJn ther  i n t r o d u c e d  the n o t i o n  "p r inc ipa l  v e c t o r "  o f  F* and,  by  
m e a n s  o f  a ce r ta in  equiva lence  re la t ion  be tween  such vectors ,  also wha t  he n a m e d  
" p r i n c i p a l  c lasses"  in F* (see [9]). Sec t ion  1 o f  this p ap e r  con ta ins  the def in i t ions  o f  
such vec to r s  a nd  classes and  the i r  i l lus t ra t ions  in a 2-d imens iona l  Euc l idean  space 
f17* = E 2 for  the  case o f  two represen ta t ive  c rys ta l lograph ic  g roups  ~5. 

Le t  P be a ~5-invariant se l f -adjoint  l inear  elliptic d i f ferent ia l  o p e r a t o r  wi th  con-  
s tan t  coeff ic ients ,  P[~u] + # ~  = 0 a ~fi-automorphic e igenvalue  p r o b l e m  (~,: ~5- 
a u t o m o r p h i c  func t ion  on  flJ). Le t  N(A) be the n u m b e r  o f  such e igenvalues  # which  
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are equal to, or smaller than, the "frequency bound"  Aq (q: order  of  P). In [3,4] we 
found an interpretat ion of  N(A) as a certain number  of  principal classes within a 
convex domain  A. D in which D c fly is an n-dimensional gauge domain  defined 
by the principal part  of  P and A. D means the homothet ical  expansion of  D with 
the factor  ),. This interpretation opened two possibilities to seize N(A): 

- I n  [3,4] N(A) is developed by the asymptotic expansion N ( A ) =  c0A n 
+ClA n-1 + O(A n+2-2/(n+l)) where co and cl are the volumina of  D and of  the (n - 1)- 
dimensional cut domain between D and certain eigenspaces through O ~ flY. 

- For  a not  too big A we find an exact estimation of  N(A) by counting the principal 
classes within A. D. 

In section 2 of  this paper we study the important  function N(A) for the above 
ment ioned  case that  fiT* = E 2, ¢5 a crystallographic group and P a differential 
opera tor  of  the order q = 2. In the case that  fly = E 3 is the 3-dimensional Eucli- 
dean space and ¢~ is one of  the 230 space groups, the investigation of  N(A) is carried 
out  analogously, even i f P  is of  order q > 2. 

1. The principal vectors and principal classes o f  a crystallographic group 

1.1. CRYSTALLOGRAPHIC GROUPS ¢~, THEIR POINT GROUPS ~ AND INVARIANT 
SUBGROUPS 

A crystallographic group ¢5 acts on an n-dimensional Euclidean space E n (espe- 
cially we look at n = 2 or 3). We should write the elements S e ¢5 as Seitz-symbols 
S = (o-, ~) so that  the origins and images ~: and ~' e E n will t ransform according to 
~' = SZc = (o', s)~ = o-~ + s. cr is called the fixed point part  and s the translat ion par t  
of  (or, s). For  R =  (p,t),  SE¢5 the composit ion rule "o"  in ¢5 is R o S  
= (p o or, ps + r) ~ ¢5. I f  e = id is the identical fixed point part  and O e E n the zero 
vector, then E = (e, O) e ¢~ is the identity element in ¢~ and S -1 = (~r -] , -~r - l s )  ~ ¢5 
the invers of  S. 

Let 

~ =  {~rl~eE~, (~r,s) e ~} 

be the point group o f ~  and 

~ =  {(e, t) e ¢5} 

the invariant  subgroup of  all translation elements of  ¢5. The factor group ¢5/'~ has 
a finite order  r and because of  the well-known isomorphy ¢5/~ = £ the order  o f £  is 
also r. In the coset decomposit ion of¢5 relative to ~, 

= + . . .  + = o 

(S,, = (cr~,s~,) e¢5; u = 1 , . . . ,  r) the elements of  one and the same coset ~;(cr~) have 
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the same fixed point  par t  ~r~ while different cosets have different such parts: 
(a~, s~) o (e, t) = (a~ o e, ~r~t + s~) = (a~, s ,  + t') ~ ~(a~) is valid for all (e, t) ~ ~. 

1.2. THE LATTICE F AND ITS DUAL F ° 

has n generators (e, bl), .  • •, (e, bn) with n linear independent  translat ion parts  
bk used to form a base bas E" and the £- invariant  n-dimensional lattice in E ", 

F := orbs(O) = {t = t k b k e E n l t k e z } ,  

where orbs(O) means the orbit of  O e E n under  the action of  group ~; Z is the set 
of  all integers. 

a is called "belonging to ~ re£"  if (a, a)e¢5. Together  with a also all vectors 
a + F and only these are belonging to cr. So modulo  F exactly one vector a is belong- 
ing to cr and it will be hitherto and in future denoted as a = s. I f  (~rl,al), (cr2,s2), 
(~rl o or2, s) e ¢5 then sometimes it is useful to think of  the Frobenius congruence 

CT152 if- ~,1 ~-~ -.q mod  F .  

As usually in crystal lography we take up also the dual situation with respect to 
that  above. So let 

c*  := {u=uh ,hluhEZ}, <t,h, bk> 

be the dual lattice to F in E ". 6k h is Kronecker ' s  symbol and ( , )  the scalar product  
in E n. N o w  instead ofc~ e £ we have to use the adjoint mapping cr T to or: 

crT:En--~E n with o'Tv=I~o0 ", v e E  n . 

1.3. THE PRINCIPAL VECTORS OF F* 

For  a fixed lattice vector u ~ F* let 

f i (u )  := (o zloTu = u} 

be the isotropy group. We consider the function 

qou0:) := exp{27ri(u,~:)}, ~:EE". (1) 

qou is a ~-au tomorphic  function on En: qou(/: + t) = qou(~)Vt~F. Therefore,  and 
because for (~r, s) e ~ the translation part  s modulo  F is well-established by or, the 
character  o f f i (u ) ,  

x(u ,  : =  

is correctly defined. 

DEFINITION 
If  X (u,-) is the principal character  of  f i (u) ,  i.e. 
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X(u, cr) = 1 Vcr~fl(u),  

then u E F* is called the principal lattice vector or also the principal lattice point. 

1.4. THE PRINCIPAL CLASSES OF F* 

u', u ~ F* are called equivalent, u I ,,~ u, if there is a point t ransform ~r ~ t2 so 
that u / = a ' r u .  Therefore F* is decomposed in equivalence classes t~(u) 
= {tt' ~/-'* lu' ~ u} with the representative u. Now from [9] we take the fact that  t(u) 
contains only principal vectors if u is principal, or only non-principal vectors if u 
is non-principal.  

DEFINITION 
t~(tt) c H* is called a principal class if u E F* is principal; its denota t ion in this 

case is t~ = 0. 

REMARK 1 

Because ord 12 = r is finite also I~(u) is finite, 

t ~ ( u ) = { u l , . . . , u l } ,  l<~r; 

of  course, u is one of the u l , . . . ,  ul. 

1.5. DEMONSTRATION OF THE PRINCIPAL LATTICE VECTORS AND PRINCIPAL 
2 CLASSES FOR THE CRYSTALLOGRAPHIC GROUPS Ar2g AND Ap31, . IN THE 

2-DIMENSIONAL EUCLIDEAN SPACE E 2. 

(a) Thegroup ~5 = AZg 

The 2-dimensional Euclidean space we relate to the or thonormal  base {0; et, ¢2} 
at the origin 0 e E 2. Then by means of the coset decomposit ion of  ~ relative to its 
invariant  subgroup ~2, the group Ap~g is defined according to 

where 

i f =  {(e,t) ~A2glt = tie1 + (2t2)e2 v t i e z }  

and relative to {0; el, e2} the fixed point parts e, c~ are represented by the (2,2) 
matrices 

e (;O -1  

and 
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a = e2(mod t).  

a is the reflection of E 2 with respect to the ¢2-axis and so A2g is generated by the 
gliding reflection A = (a, a) and two linearly independent translations, e.g. (e, el), 
(e, e2). 

The point group to A2g is clearly 

12={e , a}  with r = o r d £ = 2 .  

The lattice F c E 2 is now explained by 

F = { t  = t l b l  + t2b2ltiez}, 

where 

bl = el , 

and 

b2 = 2e2 ,  

bas F = {0;bl,b2} 

forms the lattice base for F. With respect to bas F the space E 2 has the metric fun- 
damental tensor (go) := (bi. bj) ("-": scalar product), 

( l°4) 
(go) = \ o 

To this covariant form gij we obtain the contravariant form 

(1 0) /3u> 
( d k ) =  0 1/4 ' 

If we characterize the base vectors b h of the reciprocal base 

bas F* = {0; b 1, b 2} 

by upper indices h = 1,2 we can define this base by means of the pull-up method 

l - h i=e l  i f h = l ,  
bh • d'kbk • d l b '  + d 2 6 2  - -  1/4 b2 = 1/2e2 if h = 2. (4) 

R E M A R K  2 

Conversely, the pull-down method 

bi = gijb i ( i = 1 , 2 )  

leads from bas F* to bas F. 

As the reciprocal lattice we obtain 

F'* = {U = Ul bl  + u 2 b 2 l u i e Z } .  

With respect to the sum convention we write in short 

(5) 



372 Mr. Belger / Principal vectors of crystallographic groups 

t = t i b i ~ F  and  U = u h b h E F  *. 

The  equivalence  classes t~(u) c F* appear  in two types depend ing  on  the n u m b e r  
o f  e lements  in t~(u): 

th = t~(u) = {u} if 

= = 

t t = u 2 b  2, u 2 E Z ,  11 = o r d t h  = 1, 

if  ~l ~ u ~ F* 12 = o r d  th = 2 (6) 

The  i so t ropy  groups  fit(u) - as subgroups  o f  £ = {e, a} - can  appea r  at the  
m o s t  in two cases, in fact  here we have both:  

fit! = f i t ( u ) = { e ,  ce} if u ~ t h ,  

r i t E = f i t ( U ) = { e }  if  Ue~2.  

The  vec tor  u e F *  is a pr incipal  vec tor  if  X(u, cr) = e 2~i0'~> = 1 V~refit(u), whe re  

(i) I f u  = u2b 2 ~ ~l, then  fit(u) = fit1 = {e, a} ,  and  for  e, a we have  

e : X(U, e) = e 2~ (u ' t )  = e 2ri(u262,tq~+t%2) = e 2~u2t2 1) 

= cos(2u2t 2-zr) = 1 Vu2, t 2 ~ Z ,  

: X ( U ,  c~) ----- e 2r i (u 'a)  = e 2r i(u2b2' l /2bD 

even 
= c o s ( u 2 - 7 0 =  1 if u2 

- 1 odd  

(ii) I f u  = uhb h E t~2, then  fit(u) = ritE = {e}, and  for  e we have  

e : X(U, e) = e 27ri(uhbh'tjbj) = e 2~(uht*) = 1 Vuh ~ Z ,  u2 ¢ 0. 

F r o m  (ii) fol lows tha t  all lat t ice vectors  u E t~2 are  pr incipal  vectors .  F r o m  (i) fol- 
lows tha t  all lat t ice vectors  u = u2b 2 e th are  pr incipal  if  u2 is even, and  non-pr inc i -  
pal  if  u2 is odd.  In s u m m a r y  all lat t ice vectors  u E F* are  pr incipal  except  for  
u = u2b 2 wi th  u2 odd.  

There fore ,  

01 = {u} if u = U2 b2 with u 2 E Z  even ,  

D 2 = ( B , o ~ T B }  i f  u = u i b  i w i t h u i e Z ,  ul ~ 0 ,  (7) 

a p p e a r  as pr incipal  classes b c F* o f  ~fi = A2e. 
In  fig. 1 we see the  reciprocal  latt ice F* to Ap2g. The  pr incipal  lat t ice points  are  

m a r k e d  by  symbols  A1, A2, m3, B1, . . . .  Lat t ice  points  wi thou t  a symbol  are  no t  pr in-  

l) T o  the  left:  e = id e P., to  the  r ight :  e = exp.  
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cipal. All the principal lattice points which are marked by one and the same symbol 
form exactly one principal class [~ of F*. Later, if  we define for ~ the class norm 
[[[~ [[, we will see that  classes of the same norm are characterized by the same kernel 
letter, for instance A. 

2 (b) The group ~3 = Ap31m 
We i n t r o d u c e  A23 Ira by means of its coset decomposition 

A~31m = • + ( ~ , a ) o  • + (/3, b) o • + (7, g) ° 

+ (~, ~) o • + (¢, 3) o 

relative to its invariant subgroup 

2 = {(e, t) ff Ap31ralt = t lb l  + t262; t / E Z }  

of all t ranslat ion elements (e, t). Here {0; bl, b2} shall be a hexagonal base in the 
2-dimensional Euclidean space E 2. Relative to {0; bl, b2} the group elements (a, a), 

2 (/3, b) , . . . ,  ((, 3) e A~3xra are given as the integral representation 

1 01) /3_%(01 10) 7_%(0 1 
e--%(10 ~ ) '  a - -%( -1  ' ' - 1 - l ) '  

6--%(11 -1)0 ' ~--%(-1 - 1 ) 0  1 ; 

a, b, g, 0, 3 - 0 mod t .  

The group table of the point group 

£ =  {e,a,/3,7,6,(}, r=6 ,  
to A231 m is shown in table 3. 

F rom ~E we obtain the hexagonal lattice 

F = {t = tlbl + t2b2lti~Z},bas F = {0; bl, b2}, 

and the reciprocal lattice 

F* = {u = ulb I + uzb2lu h ~Z} ,bas  F* = {0; b 1, b2}, 

where b 1 = 4/3 • bl + 2/3 • b2, b z = 2/3 • bl + 4 /3 .  b2. 
The metric fundamental  tensors gij = hi. bj or ghk = b h . b k in E z are 

(gij) = l ( 2 1  -1 

1 
with respect to 

bas F 

b a s / ~  
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(relative to the orthonormal system {0;el,e2} we have [11 = el, [12 = 1 .  el 
+v '3 /2-  e2; [ 11 = el n t- 1/v~-  e2, [12 = 2/v/-3 • ¢2). 

Because of a , [1 ,g ,~ ,8-  0 (mod t) the equation X(U,a)= 1 is valid Vtr~13, 
i.e. all the lattice vectors u e F* and so all the equivalence classes t~(u) c F* are 
principal. 

The equivalence classes appear in three types, namely being of the orders 
l = 1,3,6: 

rdl = { 0 }  ; rg~: = {-.1-U(_2111 -Jr- [12), -1-U([11 -1- [12), iU([11 -- 2112)} , O < u E Z ;  

~6 = {Ulb I q-u2b2, Ulb I - ( U l  q-u2)[12, u2111 q-Ul[12,u2111 - ( U l  q-u2)[12 (8) 

-- (U 1 -]'- u2)b 1 at- u1112, - ( U l  -~ u2)[11 -]- u2112} , u i b i ~ l , ~ f .  

2 In fig. 3 we see the reciprocal lattice F* to  @3ira" Principal lattice points are 
marked by symbols A; B1, B2; C; DI ,  D2; F; . . . .  One and the same symbol marks all 
points of one and the same principal class. The same kernel letter, for instance B, 
characterizes classes of the same class norm which will be introduced in section 
2.1(b). 

2. ~5-automorphic eigenvalue problems and numbers  ofeigenvalues  for 
crystal lographic groups 

Before we continue to investigate the examples ~5 = A2g, we should A231 m 
know something about the O-invariant differential operators and their numbers of 
eigenvalues from [3] or [4]: 

2.1. ~5-AUTOMORPHIC EIGENVALUE PROBLEMS AND THE BELONGING NUMBERS 
OF EIGENVALUES 

Let ~fi be a crystallographic group and P a O-invariant linear elliptic differential 
operator with constant coefficients. The order of P may be arbitrary (see [4]). But 
for simplification and shortness we restrict ourselves to operators of second 
order, 

p =  phk 02 4mph 0 _47r2p0 (9) 
0vhOv k O~ ' 

where relative to bas F = {0; b l , . . . ,  b,} the coefficients ph~ = pkh, ph are the con- 
travariant coordinates of a given 2-, 1-fold tensor, respectively, and p0 = phph" 
Here relative to bas F* = {0; bX,..., b"} the Ph is defined by Ph = Phi, U" and Phi, by 
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Ph~P~ = ~Sh ~. Fur thermore  u = Vhb h is a covariantly written vector in E ". As the 
characteristic polynom to P we have 

P ( t~ ) = -- phk vh v k -~- 4 7r Ph vh - 4 7r2 p ° 

= --/~k(v~ -- 2~rP~)(v~ - 2~rP~). (10) 

REMARK 3 
(a) { p h k }  could be interpreted as the metric fundamental  t e n s o r  {ghk} of the 

Euclidean space E ' ;  then b h- b k =ghk : =  phk is the scalar product  of  EL 
(b) P[~o] ~ - P[~,]~ (% ~u: functions) can be written as a divergence term and so P 
is a formally self-adjoint operator. (c) P is ¢~-invariant; that means 

o s ]  = P[ ]oSVS  . 

N o w  we consider the ~i-automorphic eigenvalue problem 

P[V] + ~ V  = 0, v ~ L 2 ( O ) ,  (11) 

where L2 (~5) is the Hilbert space over C of locally quadratically integrable ~5-auto- 
morphic  functions. ~5-automorphic means ~(S~) = ~(~)VSE (5 and ~ = xhbh ~ E ' .  
Let spec~ (P) be the ~5-automorphic eigenvalue spectrum of (11). For  an arbitrary 
but fixed given "frequency bound"  A 2 we consider the number  

N(A) = card{/, G spece (P)1# ~</~2} 

of all eigenvalues # of(11) below A 2. 

( a ) The eigenvalues and  eigenfunctions o f ( 1 1 )  
Let b = { u l , . . . ,  ut} c F* be a principal class, 9~(ui) the isotropy group of  ul. 

(~3/~R(ul))L the left coset decomposit ion of  the point group £ of ~5 with respect to 
9~(ul). Fur ther  let rep(£/fft(ul))L = {or1,..., gt} be a system of representatives of  
this decomposition. The 51 , . . . , s t  are vectors belonging to ~rl,...,~rt, 
i.e. S~ = (cr~,s~) E @; u = 1 , . . . , l .  So we can introduce the "b-corresponding" 
functions 

1 
~%(~:) = Z~ou~(S~:) ,  ~ =  XAbhGE n, (12) 

u=l 

where qou comes from (1). 
We know that ~u~ is a O-automorphic  function and P[~,~] = P(27ru)~u~ if u~  [9 

(see [3,9]). Therefore ~,~ is the automorphic  eigenfunction to the eigenvalue 
/zb = -P(27ru). Because of  P ( c r T v )  = P(v)Vcr G ~3, u = vhb h G E ' ,  the characteristic 
po lynom P is a class function P(27rb):=P(27ru) where u~b .  So we have 
#~ = -P(27rb) and according to [3] only these #~ are eigenvalues of  (9). Therefore 

spece (P) = {#~ = -P(Z~rb)lb E ~j} (13) 

is valid; -0 is the set of  all principal classes ofF*.  
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( b ) P-norm for  vectors and classes 

D E F I N I T I O N  

110112- ~ e ( 2 ~ r ( o  + p ) ) =  Phkvhvk is called the P - n o r m  
p = ehb h. 

II o II is an £ - au tomorph i c  funct ion (see (19), (10)), i.e. 

II~ToII = 11011 v,~Ez. 

Therefore  IlUlll . . . . .  IluHI--Ilull is valid for 
justifies: 

of  0 = v h b  h~E n, 

t~(tt) = ( U l ,  . . . , HI} which 

D E F I N I T I O N  

II~(u) ll = Ilull is said to be the class n o r m  of t (u) .  

This n o r m  has the property:  I f  II~(u)ll # II~(u')ll so ~(u) # ~(u') but not  vice 
versa: for t~(u) ~ t~(u') could well be Ile(u) ll = II~(u')ll. In fig. 1 all principal classes o f  
¢5 --- A2g with the same class n o r m  are m a r k e d  with one and the same capital  let- 
ter. Different  indices characterize different classes. All principal lattice points  of  
one and  the same class are denoted  by the same symbol.  Fo r  instance the classes 
~2 = ( bl , - b l  }, [)1 --'~ { 262} and [~'a = { -262} have the c o m m o n  capital  letter A, the 
principal  points  b 1, _ b 1; 2b:; - 2 b  z have then the symbols A1, A1; A2; A3. The deno- 
ta t ion in fig. 3 mus t  be interpreted analogously.  

By means  of  the class no rm the eigenvalues #~ f rom (13) can be wri t ten as 

/zb = (27r)Zl[D - p[[2, p = phb h, (14) 

where [~ - p is the class of  all vectors u~, - p Vu~ E [~. 

(c) N(  A ) as the number o f  principal classes b contained in a certain convex domain 
A . D c E  n 

D E F I N I T I O N  

For  A > 0 we int roduce in E n the domains  

D = {o~E"  11o11~ 1 } ,  (15a) 

11oll A 1 A. D = 0 e E  n ~< ~ , (15b) 

{ ~E. ll A} p + A - D =  o o - p l l ~  (15c) 

and call them the gauge domain ,  homothe t ica l  expansion of  D with A as a factor,  
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and parallel translated domain along the vector p, respectively. According to [3], 
proposit ion 1, formula (25), 

N(A) = card{b eY)lb c (p + A. D)} (16) 

is valid. 

REMARK 4 
Here we have the essential fact that either [j c ( p + A . D )  or 

[~ n (p + A- D)  = 0, with A- D being an £-invariant  domain for all A > 0. 

By means of  formula (16) we can ascertain N(A) exactly, so far as A is not  too 
big: we simply have to count all the principal classes b within the domain p + A- D 
and of  its boundary.  

( d) The asymptotic estimation of N( A ) 
N(A) can be written as a finite sum of Weyl sums, and by means of  Landau 's  esti- 

mat ion  of  the lattice remainder  we get 

N(A) = l v o l n ( D ) ' ) n  
r 

1 + -  Z voln-l(DN~3*(~r))'G''V'-l+O()~n-2+z/(n+l))" (17) 

Symbols in (17) 
(i) G = 0 or 1 is Landau 's  &symbol; according to proposition 4 in [3] the relation 

6o = 1 is valid for (G s) ~ ~ if and only if there is a lattice vector to ~ F with the prop- 
erty that  (cr, s + to) has a fixed point ~0 ~En, i.e. o7.0 + s + to = ~0- (ii) r = ord £ is 
the number  of  elements of £. (iii) fiT* (cr) := ker(~r T - id) is the eigenspace of  the 
eigenvalue 1 of  cr T if cr~£n_l := {cr~£[dim ffP(cr) = n -  1}. (iv) vol~(D), 
vol~_l (D n flT*(cr)) are the n-, ( n -  1)-dimensional volumes of the gauge domain 
and of  the cut domain D n f17* (~r) c E ~, respectively; according to the procedure in 
[9], [3] or [4] we have to regard here also that the volume definition in E ~ is founded 
on the normalisat ion 

vol.(3"(F*)) = 1, vol._l(Sr(F * n~7*(~r)))= 1, (18) 

where 3"(F*), Y(F*N ~7*(a)) are the fundamental  domains of the lattices F*, 
F* n if/* (a), respectively. 

2.2. EIGENVALUE BEHAVIOUR IN (11) WITH RESPECT TO THE GROUPS A~g 

ANDA~31m 

(a) The group ¢5 = A2g 
First we recall again (section 1.5(a)) the definitions of A~g = if; + (a, a) o if; and 

the terms ~; _r', F*; (gij), (ghk); 9~1, fit2 and above all of[~l, b2 from (7). 
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Eigenvalues andeigenfunctions of the Z12,g-aUtomorphic eigenvalueproblem (11) 
First we consider all A~g-invariant d~fferential operators P. The invariance con- 

dition P[~  o S] = P[~,] o S VS = (cr, s) (see remark 3(c)) means for the coefficients 
phk and ph of P t h a t  

phko~ 4 = pij ,  pho~ = e l ,  (19)  

are valid for all or= ( ~ ) ~ £ =  {e,a} - interpreted with respect to the base 
bas /1  = {0; bl, b2} = {0; el,2e2}. For ~r = e = (6~) (Kronecker 's  symbol) eqs. (19) 
are identities. For  cr = a = (a~) (see (2)) we obtain from (19) the set of  all A2g - 
invariant operators in the general form, 

P = pl l0~l  + / 0 2 2 0 2  + 4 7 r i p 2 c ~ -  ( 2 r r p 2 ) 2 / p  22 ' 

0 
P l l ,PZ2>0 ,P2  arbi t rary,  Oh = Ova and u = V*bh. (20) 

The assigned characteristic polynom then is 

P(Ia) = - p I I ~  I - PZ2v2 + 47rPZv2 - (2rrp2)2/P 22 , 10 = vhb h , (21) 

and the P-norm oftJ is 

Ilta[[ = (Pllv2 + p22v2)V2 relative to {0; b 1, b2}. (22) 

For  P from (20) we solve now the Ap2g-automorphic eigenvalue problem 
P[~v] + #~v = 0 according to the formulas (12), (13) and (21). To write the formula 
(12) for b = 11 i, b2 from (7) we must be aware of the fact that 

{e} 
rep(~2/~(U))L = {e,a} 

For ~v~, (g) and #2, (i = 1,2), 

~u~, (r) = qou(E;t) = :.0:), 

UE[}I , 
if 

Lt~D2.  

E =  (e, 0),  

/*~ = -P(2rd11) = ( 2 " / r ) 2 ( p 2 2 ~  2 - 2p2u2 q-  (p2)2/p22), 
where 

1.1 = U2[j2 E[~I~U2 even; 

(23) 

1 
= + 

1 
= + + a ) ) ,  

X/2 

A = = ) ,  

#~2 = -P(2rr[~2) = (27r)2(P11~ + p22u2 - 2p2u2 + (pa)2/p22), (24) 
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where 

tt = Uib i ~ 192" 

If  19 l, 192 run through the set Y) of all principal classes of  AEg we obtain all eigenva- 
lues/% and eigenfunctions ~/~ (~) of the AEg-automorphic eigenvalue problem (11). 

The number N( )~) of eigenvalues 
We obtain the asymptotic estimation of N(A) from (17). There we have for 

~5 = A~e the data n = 2, r = 2; t~ e = 1,  t~c~ • 0. The latter is valid because (according 
to section 2.1(d)) (e, 0) has a fixed point (choose to = 0) but for (a, a) there is no 
to E F so that  (a, a + to) has a fixed point. Fur thermore  we have 

o ) 
from (15a) and (22). In general D and A . D  are ellipses. So we obtain 
vol2(D) = 1/(47rx/P 11 - p22) if we consider the fact that the area vo12(9"(F*)) of the 
fundamental  domain Y(F*) (SY(F*) spanned by b 1 and b 2) is fixed to be equal to 1 
(see (18)). The asymptotical expansion of  N(A) for all P according to (20) is 

N(A) = 1 A 2 -Jr- O ( A 2 / 3 )  • 
87rx/pll . pEa 

If  we investigate the important  case that the metric fundamental  tensor gJ, k from 
(3b) defines the coefficients phk of P phk :__ ghk or, vice versa, phk delivers the 
metric in E 2, we obtain P = ~ + ¼~ + . . .  and 

N ( a )  = 2 + O(/~2/3). 

Then D and A- D are circles. 

Exact estimation of N()~) by counting the principal classes in )~. D for small values 
of;  

This est imation could be carried out in general as in the case of  phk = ghk, i.e. 
P = C~l + ¼~ (for the sake of simplicity, let e 2 =  0). Then A - D  is the circle 

1 2  + ~v 2 ~< ()~/27r) 2 with respect to the base {0; b 1 , b 2 } or (xl) 2 + (x2) 2 ~< (A/27r) 2 with 
respect to {0; el, e2}. In fig. 1 we count the principal classes 191,192 which are con- 
tained in ,~. D and on the circumference of A. D (in general A. D are ellipses). The 
result N(A) of the counting is represented in table 1 and fig. 2. Natura l ly  N(A) is a 
step function. In table 1 the function values N()~) are given just  at the jump  disconti- 
nuities A = 27r. R, where R = V/(X 1)2 -'1- (X2) 2 is the radius of A- D but here we 

/ 

unders tand (x 1 , x 2) as a lattice point (x I , x 2) e 19i c F*. The magnitude of  the dis- 
continuity of  N on A is equal to the number  of principal classes on the periphery of  
A- D.  Figure 2 and table 1 represent also the comparison between the exact step 
function N(A) and its asymptotic estimation N(A) ,-~ A2/47r. 
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(b) Thegroup 2 ~) = Ap31m 
As for ~ = A~g in section 2.2(a), we first estimate the A~al,,-invariant differen- 

tial operators P by means of  the invariance condition (19) with respect to 
~r = a,  fl, 7, 6, ~ e £. Easy algebraic calculations deliver all invariant  operators, 

:L : : )  
P=C\Ovl +Ovlcg----~--~;, c > 0 ,  t~=v/ibh. (25) 

The assigned characteristic polynom is 

e @ )  = -c (v~  + ~ : :  + ~), 
and therefore the P-norm of ~ is 

Ili, II = v ~ ( ~  + v : 2  + 4 2 ) ' : .  

c>0 ,  ~ =vhb  h, (26) 

(27) 

For  the above P we solve the ArE31m-automorphic eigenvalue problem 
P[V] + #~u = 0 accordmg to (122, (13=) and (26). Of course here for the principal 
classes I~ we must take ~1 = tl,  [~3 = t~3, I~6 = t~6 from (8). To establish formula (12) 
for I9 = I~1, ~: ,  D6 we must first consider 

£ { {e} U l ~ b l ,  

f i t(u1)= {e, f l} ,  rep(£/ff~(ul))L = {e,c~,7} if u l~ [~ : ,  

{e} Z U1 ff ~6" 

If  we consider that  for u ~ / ~  and for s = a, b, IJ, ~, 3 = 0 mod t (see section 1.5(b)) 
the relation qou(s) = 1 is true, we obtain 

~ O , ( r ) = l ,  / zo ,=O;  

~'~(~) = (:±.(b,+:)(D + ~o+~ib,-2:)(D + :+~i-2b'+:)(D) 

1 
x/3 

#~: = 12c(Tru) 2 , 

where 

u = +u(b ~ + i f ) e  ~:, 0 < u ~ Z ;  

1 

+ ~o-@,+,,2)b' +,,~b~ 0:) 

= ~6  ~ ~pu(OT) , /zh6 = (27r)2c(u~l + UlU2 q-" u~2 ) , 
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where u = Uib i e ~3" 

If [~1, I~ :~3 and D6 run through the set Yj of all principal classes of  A~31m we obtain 
all eigenvalues #~, and eigenfunctions ¢/~, (~) of  the A~31m-aUtomorphic eigenvalue 
problem (11). 

The number N(A) of eigenvalues 
We consider the asymptotic estimation of N(A) in (17). Relative to ~ = A231 m 

comes out n = 2 ,  r = 6 ;  £ 1 = { a ,  fl, ff} and 6 ~ , = 6 ~ = 6 ¢ = 1  because of  
a, b, ~ - 0 mod t. To ascertain £1 and voll (D N ~J* (a)) we have to establish the vec- 
tor spaces ffI* (a) for a = e, a, fl, % 6, (: 

fl3*(a) = {V = v ( -2b  1 + b2) lveR},  dim ~*(a)  = 1, 

~*(fl) = {v = v(b 1 + b2) lveR},  dim ~*(fl) = 1, 

KP(7) = ffJ*(6) = {0}, dim ~*(-y) = dim ~*(6) = O, 

KI*(() = {t~ = v(b 1 - 2b2) lveR},  dim ~3"(() = 1. 

The equation of the circle D relative to the base {0;el,e2} is 
(xl)2 + (x2)2 = 1 / (3c~) ;  2R--2/(v/-~Tr) is the diameter of  D and therefore 
voll (D n ff~* (a)) = 2 / ( x / ~ r )  for a = a, fl, (. So we obtain with regard to (18) 

N(A) = ~vol2(D). A 2 

+ ~(voll (D N ~*(a) )  + voll (D N ffJ* (fl)) + VOll (D N ffJ*(())) • A 

-1- O(A 2/3) 

-~31rc A2 1 - -  -} - - , , ~  n t- O ( ) ~ 2 / 3 ) ,  C > 0 .  (28) 
12 2v/~Tr 

R E M A R K  5 

Because of (18) the fundamental domain ff'(el x e2) (which is spanned by el, e2) 
is equal to v/3/2. This factor must be considered for the calculation of 

1 x/3 
vol2(D) - 37rc 2 

Exact estimation of N(A) by counting the principal classes in A . D for small values 

As in example O = A2g, fig. 1, we now count the principal classes [h, [~±, 3 [~6 
f romO = in the circle A-D:  (xl) 2 + (x2)2 ~<RZ with R = A/(x/-~r) by means A231 m 
of fig. 3 for c = 4/3. The result is shown in fig. 4 and table 2. Important  is the follow- 
ing remark about the structure of N(A) in (17) or (28). 
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~,- ~- 
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|it 

~c.~ ~ i ~ ~l'"'J~ 
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~-~ ~ ,-15 

4 : ' '  I '  
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t4 r.i ,4 ~ uq ~_ 

tt~ 

t ,4 

i +  -... "~ ~1 i~ 
H 
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T a b l e  2 

( : : , ~ )  (0,0) ( l , l / v ~ )  (2,0) (2,21v~) (3,11V~) (3,31v/3) (4,0) (4,2/ '¢~) (4,41v:3) (5 ,1 /v~)  

R =  v / ~ + x  z, 
3, = 2~rR 
N(A) 

0 1.15 2 2.31 3.10 3.46 4 4.16 4.62 5.03 
0 7.26 41r 14.51 19.20 21.77 81r 26.16 29.02 31.62 
1 2 4 5 7 8 10 12 13 15 
0 0.60 1.81 2.42 4.23 5.44 7.26 7.86 9.67 11.49 
0 1.18 2.81 3.57 5.76 7.17 9.26 9.94 11.98 14.00 

~(~) ~ 2  
48~v 

Table 3 

~(~,) = ~r(.~) +~.~ 

e a /3 3' 6 ( 

a e V /3 ( 6 

/3 6 e ( a V 

3' ( a 6 e /3 

6 /3 ( e V c~ 

( 3' 6 a /3 e 

R E M A R K  6 

The asymptot ic  of  N(A) is N(A) ~-, co • A n + c l .  An-l; Co • A n is said to be the prin- 
cipal par t  and  Cl • A "-1 the second par t  of  N(A). Wha t  is new about  the asymptot ic  
of  N(A) f rom (17) is just  the fact that  N(A) contains  not  only a principal  par t  but  
also a second part.  

So we are ab le  to give a compar i son  of  exacti tude between N(A), 
N(A) := co • A" and N(A) := Co • A" + Cl . A n-1. For  ¢5 = Ap231 m this is mos t  impress- 
ively shown in fig. 4. 

3. C o n c l u d i n g  r e m a r k s  

Already one year after the exposit ion about  the black-body radia t ion which 
was given by H.A.  Schwarz during the course of  the 1909 annual  meet ing of  the 
G e r m a n  Physical Society in K6nigsberg,  H. Weyl reflected on this impor t an t  devel- 
opmen t  in a paper  abou t  the asymptot ic  behaviour  of  N(A) (see, e.g., [17], later 
[18], etc.). Weyl 's  asympto t ic  est imations extend only up to the so-called principal  
term co • An: N(A) ~ Co - A n (A: frequency bound,  co: constant ,  n: d imens ion  of  the 
space). But already the conjecture of  Weyl/P61ya does concern the p resumpt ion  
tha t  there exists also a "second te rm"  Cl. A n-1 with N(A) ~ Co • A n + Cl • A n-1. Just  
this conjecture is certified by formula  (17) for invariant  operators  (with respect to 
crystal lographic groups  or more  general proper ly  discont inuous  groups).  
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The knowledge of  the second part Cl • A n-1 improves the asymptotic of  N(A) 
essentially. 

We should also think about the theory of  quantum chaos where oscillatory cor- 
rections to Weyl-type terms are associated with periodic orbits (closed geodesic in 
manifolds) or to the density of the orbits of  crystallographic groups [ 14]. 

Glossary to figures 1-4 

The Fraktur letters within the text or in formulas: 

appear in figures 1-4 in the old-fashioned style of  German hand-writing, i.e. as: 
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