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For a crystallographic group & acting on an n-dimensional Euclidean space we consider
the B-invariant linear elliptic differential operator P with constant coefficients and t6 it the &-
automorphic eigenvalue problem Ply] + py = 0. N(A) is the number of all eigenvalues y smal-
ler than or equal to the “frequency bound” A? (¢: order of P). Earlier we found the asymptotic

_estimation N(A) ~ ¢o - A"+ ¢1 - A*™! (co, ¢;: certain volumina). Furthermore, N()\) was inter-
preted as the number of so-called principal classes of principal lattice vectors within a convex
domain. In this paper we demonstrate these results for the case n = 2 for two representative
crystallographic groups & and the assigned lattices. Above all we demonstrate a counting
method for an exact estimation of N(A) if Ais not too big. In an analogous way we can treat all
the 230 space groups of crystallography. It will be seen that these applications are brought
about by the so-called principal vectors of these lattices.

0. Introduction

To follow this paper the consideration of Giinther’s [9] and my publication [3]
is recommendable but is not a condition. The theory of these publications is
repeated here partly but the actual aim is to demonstrate this theory by crystallo-
graphic groups.

Let & be a properly discontinuous group of affine transformations acting on an
n-dimensional affine space . The invariant subgroub ¥ — & of all translation ele-
ments of & defines a lattice I" < . To I is assigned the dual lattice I™* in the dual
space U* to 0. Giinther introduced the notion “principal vector” of I and, by
means of a certain equivalence relation between such vectors, also what he named
“principal classes” in I"* (see [9]). Section 1 of this paper contains the definitions of
such vectors and classes and their illustrations in a 2-dimensional Euclidean space
0* = E? for the case of two representative crystallographic groups &.

Let P be a &-invariant self-adjoint linear elliptic differential operator with con-
stant coefficients, P[y| + pyw =0 a G-automorphic eigenvalue problem (y: &-
automorphic function on ). Let N () be the number of such eigenvalues p which
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are equal to, or smaller than, the “frequency bound” M (g: order of P). In [3,4] we
found an interpretation of N()\) as a certain number of principal classes within a
convex domain A - D in which D < * is an n-dimensional gauge domain defined
by the principal part of P and A - D means the homothetical expansion of D with
the factor A. This interpretation opened two possibilities to seize N (A):

-In [3,4] N()\) is developed by the asymptotic expansion N()\) = co\"
+ei A1 O(A+2-2/(m+1)) where ¢ and c; are the volumina of D and of the (1 — 1)-
dimensional cut domain between D and certain eigenspaces through O e .

— For a not too big A we find an exact estimation of N()) by counting the principal
classes within A - D.

In section 2 of this paper we study the important function N(\) for the above
mentioned case that 20* = E2, & a crystallographic group and P a differential
operator of the order ¢ = 2. In the case that 0* = E? is the 3-dimensional Eucli-
dean space and & is one of the 230 space groups, the investigation of N () is carried
out analogously, evenif Pis of orderg>2.

1. The principal vectors and principal classes of a crystallographic group

1.1. CRYSTALLOGRAPHIC GROUPS &, THEIR POINT GROUPS £ AND INVARIANT
SUBGROUPS ¥

A crystallographic group & acts on an n-dimensional Euclidean space E” (espe-
cially we look at n = 2 or 3). We should write the elements S e ® as Seitz-symbols
S = (o, 5) so that the origins and images r and ¢’ e E” will transform according to
¥ = St = (0,5)r = or + 5. o is called the fixed point part and s the translation part
of (0,5). For R=(p,tr), Se® the composition rule “o” in & is RoS
= (poo,ps+rt)e®. If e = id is the identical fixed point part and O eE" the zero
vector, then E = (e, O) €  is the identity element in  and S~! = (67!, -0 15) e &
the invers of S.

Let
£ ={o]3s€kE", (0,5) e &}
be the point group of & and
T = {(e,t) €&}

the invariant subgroup of all translation elements of . The factor group &/ has
a finite order r and because of the well-known isomorphy & /% = £ the order of £ is
also r. In the coset decomposition of & relative to T,

& =k(o1)+...+k(0r), k(o)) =S, 0T,

(Sy = (0,,8,)€B;v =1,...,r) the elements of one and the same coset x(0,) have
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the same fixed point part o, while different cosets have different such parts:
(0,,5,) 0 (e,t) = (o, 0e,0,t +5,) = (0,5, + ') ek(o,) isvalid forall (e, t) e T.

1.2. THE LATTICE I AND ITS DUAL I'*
T has n generators (e, b;),. .., (e, b,) with n linear independent translation parts
by used to form a base bas E” and the £-invariant n-dimensional lattice in E”,
I':= orbg(0) = {t = t*b e E"|tk e Z},

where orbg(0O) means the orbit of O e E" under the action of group ¥; Z is the set
of all integers.

a is called “belonging to ce £” if (0,a) e ®. Together with a also all vectors
a + I"and only these are belonging to 0. So modulo I" exactly one vector ais belong-
ing to o and it will be hitherto and in future denoted as a = s. If (01, 51), (02,52),
(01 0 02,5) € ® then sometimes it is useful to think of the Frobenius congruence

o152 +s1=smod I'.

As usually in crystallography we take up also the dual situation with fespect to
that above. Solet

I = {u=wbllueZ}, (&b =6,
be the dual lattice to I"in E”. 6,’; is Kronecker’s symbol and ¢ , ) the scalar product
in E". Now instead of o € £ we have to use the adjoint mapping o* to o:

ol E"—>E" with clo=too, beE".

1.3. THE PRINCIPAL VECTORS OF I

For a fixed lattice vectorue I'* let
R(u) := {oeL|o’u=u}
be the isotropy group. We consider the function

pu(r) == exp{2micu,)}, reE". (1)

@, is a T-automorphic function on E": ¢,(r + t) = ¢, (r)Vte I'. Therefore, and
because for (o, 5) € ® the translation part s modulo I' is well-established by o, the
character of R(u),

x(u,0) = pu(s),
is correctly defined.

DEFINITION
If x(u, -) is the principal character of R(u), i.e.
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x(u,0) =1 VYoeR(u),

then ue I is called the principal lattice vector or also the principal lattice point.
1.4. THE PRINCIPAL CLASSES OF I

v/, ueI™ are called equivalent, u’ ~ u, if there is a point transform ce £ so
that u = oTu. Therefore I is decomposed in equivalence classes &(u)
= {u' e I'"|u’ ~ u} with the representative u. Now from [9] we take the fact that £(u)
contains only principal vectors if u is principal, or only non-principal vectors if u
is non-principal.

DEFINITION
t(u) < I'* is called a principal class if ue I'* is principal; its denotation in this
caseist = h.

REMARK ]
Because ord £ = ris finite also (u) is finite,
tu) = {uy,...,w}p, [I<r;
of course, uis one of theuy, ..., u.
1.5. DEMONSTRATION OF THE PRINCIPAL LATTICE VECTORS AND PRINCIPAL

CLASSES FOR THE CRYSTALLOGRAPHIC GROUPS A2, AND A%, IN THE
2-DIMENSIONAL EUCLIDEAN SPACE E2.

(a) The group ® = A’%g

The 2-dimensional Euclidean space we relate to the orthonormal base {0; ¢;, ¢, }
at the origin 0 e E*. Then by means of the coset decomposition of & relative to its
invariant subgroup ¥, the group Aig is defined according to

2
A, =T+ (a,a)0 T,

where
T={(e,t) e A |t =1"e; + (2)e; VI € Z}

and relative to {0;e;,e,} the fixed point parts e, o are represented by the (2,2)

matrices
o — p)

N(l 0)
e ,
0 1

and
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=ex(mod t).

a is the reflection of E? with respect to the e-axis and so A;' is generated by the
gliding reflection 4 = («, a) and two linearly independent translations, e.g. (e, ¢;),

(ea 82)-
The point group to Aig isclearly

L£={e,a} with r=ord £=2.
The lattice I' = E? is now explained by

I'={t=1b; + 2|t cZ},
where

by =e¢;, by=2ey,
and

bas I' = {0; by, by}

forms the lattice base for I. With respect to bas I the space E? has the metric fun-
damental tensor (gj;) := (b; - b;) (“-”: scalar product),

1 0
@)=y o) (3a)
To this covariant form g;; we obtain the contravariant form
1 0
k
= _ 3b
@)=y 1) (3b)

If we characterize the base vectors b of the reciprocal base
bas I'* = {0;b', 6%}
by upper indices # = 1,2 we can define this base by means of the pull-up method

” 1 ) 1"b1=€1 ifh=1,
= g"*br = g"'b) + g"%b, =

4
1/4by=1/2¢, ifh=2. )

REMARK?2
Conversely, the pull-down method

leads frombas ™ tobas I

Asthe reciprocal lattice we obtain
I'"={u= ub! + uzbzlu,-eZ} ) (5)

With respect to the sum convention we write in short
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t=rbel’ and u=ublel™.
The equivalence classes €(u) = I"* appear in two types depending on the number
of elements in &(u):

b=0tuw ={u} if u=wb®, weZ, L=ordt =1,
b =tu) = {u,a™u} if & Fuel™, L=orde =2. (6)

The isotropy groups R(u) — as subgroups of £ = {e,a} — can appear at the
most in two cases, in fact here we have both:

R =R(u) ={e,a} If uek,

Ry = R(u) ={e} if uet,.
The vector ueI™ is a principal vector if x(u,0) = & = 1 VoeR(u), where
(0,8) EA;gI
() Ifu = upb? e by, then R(u) = R, = {e, o}, and fore, o we have

2midut 2miduy 62,116y +£2b )
e: x(ue) =Y = FTENHRD i 1)

=cosQuyt? 1) =1 VYuy,PeZ,
: : 2

a: X(u, a) — eZm(u,a) - eZm(uzb /282>
1 . even

=cos(up - ) = {_1 if up odd

(i) If u = u,b" € ;, then R(u) = R, = {e}, and for e we have

bt dh. .
e X(u, e) — eZm(u;.b R4 — eZm(u;,t") =1 vuh EZ, Uy # 0.

From (i1) follows that all lattice vectors u € ¥, are principal vectors. From (i) fol-
lows that all lattice vectors u = u,b% €, are principal if u, is even, and non-princi-
pal if u; is odd. In summary all lattice vectors ue I"* are principal except for
u = u,b% with u, odd.

Therefore,

by = {u} if u=ub? withuseZeven,
by = {u,aTu} if u=ub’ withweZ, u £0, (7

appear as principal classesh = I™ of & = A; .
In fig. 1 we see the reciprocal lattice I'™* to Af;g. The principal lattice points are
marked by symbols Ay, A,, A3, By, ... .. Lattice points without a symbol are not prin-

D Totheleft: e = ide £, to the right: e = exp.
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cipal. All the principal lattice points which are marked by one and the same symbol
form exactly one principal class f of I"*. Later, if we define for h the class norm
I5]|, we will see that classes of the same norm are characterized by the same kernel
letter, for instance A.

(b) Thegroup ® = Al
We introduce Ai_nm by means of its coset decomposition
Ay =T+ (@,0) 0T+ (8,) 0T+ (1,0) 0T
+(6,0)0T+(¢3) 0T
relative to its invariant subgroup

T = {(e,t) e ALy |t = 'by + Pby; £ € Z}

of all translation elements (e, t). Here {0; b1, by} shall be a hexagonal base in the
2-dimensional Euclidean space E2. Relative to {0; by, by} the group elements («, a),
(8,8),...,(¢,3) € AﬁBlm are given as the integral representation

/10 /1 0 (01 (0 1
= = 5 =
“\o 10 *T\21 1) 1 o) T\ 1)
1 -] CN(-l —1)
= = .

1 0/ o 1)
a,b,g,0,3=0mod t.

The group table of the point group
£={31a1ﬂ37761(}7 r=61

to Aﬁnm is shownin table 3.

From T we obtain the hexagonal lattice
= {t=1t'b; + 2by|f €Z},bas I" = {0; by, b2},
and the reciprocal lattice
I* = {u=ub' + b € Z} bas I'" = {0;b', 6%},

whereb' =4/3-b; 4+2/3 - b5,b%2 =2/3-b; +4/3 - b.
The metric fundamental tensors g;; = b; - b; or g" = b* - b*in E* are

(gi) =%( 2 _1) bas I

-1 2 .
with respect to

(ghk)‘—’%(? ;) bas I'™
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(relative to the orthonormal system {0;e;,e;} we have by =¢;, by=—1-¢

+v3/2 eb! =e; +1/v/3-e3,02 =2//3 - ¢9).

Because of a,b,g,0,3 =0 (mod t) the equation x(u,0) =1 is valid Voe g,
i.e. all the lattice vectors ue I'* and so all the equivalence classes £(u) < I'* are
principal.

The equivalence classes appear in three types, namely being of the orders
l=1,36:

b ={0}; € = {Fu(-26" +b%), £u(b! +b%), £u(b! —26*)}, O<ueZ;

6 = {u1b' +upb? urb! — (u1 + u2)b?, urb! + u 6% usb! — (uy + up)b? (8)

— () +u2)b1 + u b2, —(uy + u;;)bl + uzbz}, uibiéél,{’,g‘.

In fig. 3 we see the reciprocal lattice I™ to Afﬂlm. Principal lattice points are
marked by symbols A; By, B;; C; Dy, Dy; F; . ... One and the same symbol marks all
points of one and the same principal class. The same kernel letter, for instance B,
characterizes classes of the same class norm which will be introduced in section
2.1(b).

2. G-automorphic eigenvalue problems and numbers of eigenvalues for
crystaliographic groups
Before we continue to investigate the examples ® = Af,g, Aﬁﬂm we should
know something about the ®-invariant differential operators and their numbers of
eigenvalues from [3] or [4]:

2.1. - AUTOMORPHIC EIGENVALUE PROBLEMS AND THE BELONGING NUMBERS
OF EIGENVALUES

Let & be a crystallographic group and P a &-invariant linear elliptic differential
operator with constant coefficients. The order of P may be arbitrary (see [4]). But
for simplification and shortness we restrict ourselves to operators of second
order,

5? s,

k . 0

= — 4miP" — — 47*P 9
=P e 4 g ! ®)
where relative to bas I = {0; by, ..., b,} the coefficients P"* = P*" P are the con-

travariant coordinates of a given 2-, 1-fold tensor, respectively, and P = P"P;,.
Here relative tobas I = {0;b', ..., b"} the P, is defined by P, = P, P” and P, by
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Py P = 6" Furthermore v = v,b" is a covariantly written vector in E”. As the
characterlstlc polynom to P we have

P(o) = — Pk VpUk +47rPh'uh — 47*P°
= — P (v — 210Py) (v — 27P) . (10)

REMARK3

(a) {P"} could be interpreted as the metric fundamental tensor {g"*} of the
Euclidean space E”; then b"-b* =g/ .= P* is the scalar product of E”.
(b) P[p]w — P[w]@ (p, v: functions) can be written as a divergence term and so P
is a formally self-adjoint operator. (c) P is ®&-invariant; that means
PlyoS]=Ply]oc SVSe®.

Now we consider the -automorphic eigenvalue problem

Ply] +py =0, wely(8), (11)

where L,(®) is the Hilbert space over C of locally quadratically integrable &-auto-
morphic functions. G-automorphic means w(St) = y(r)VSe® and t = x"b, e E".
Let specg(P) be the B-automorphic eigenvalue spectrum of (11). For an arbitrary
but fixed given “frequency bound’’ A2 we consider the number

N()) = card{p e specg(P)|p <A}
of all eigenvalues p of (11) below A2,

(a) The eigenvalues and eigenfunctions of (11)
Let h = {uy,...,} < I'* be a principal class, R(u;) the isotropy group of u;.
(£/R (1)), the left coset decomposition of the point group £ of & with respect to

R(u;). Further let rep(£/R(u1)). = {o1,...,01} be a system of representatives of
this decomposition. The s;,...,5 are vectors belonging to oy,...,0,
ie. S, =(0,,5)e®; v=1,...,1. So we can introduce the “h-corresponding”
functions
1
wo(®) =— > @u(S), ©=x"byeE", (12)
\/z v=1

where ¢, comes from (1).

We know that y is a -automorphic function and Ply,] = P(2mu)yy if ueh
(see [3,9]). Therefore wy is the automorphic eigenfunction to the eigenvalue
py = —P(27ru) Because of P(cTb) = P(v)Voe L, b = u;b" €E”", the characteristic
polynom P is a class function P(2rh):= P(2mu) where ueh. So we have
uy = —P(27h) and according to[3] only these 5 are eigenvalues of (9). Therefore

specg (P) = {uy = —P(2mh)|h e H} (13)
is valid; $ is the set of all principal classes of I™*.



376 M. Belger / Principal vectors of crystallographic groups

(b) P-norm for vectors and classes

DEFINITION
[lo]* = ~ G P2n(o +p)) = Py is called the P-norm of b = y,b" e E",
p = Ppb".

||v]] is an £-automorphic function (see (19), (10)), 1.e.

lloToll = |lo]l Voeg.
Therefore |ju|| =... = |lw| = |ju|| is valid for ¥(u)= {uy,...,wy} which
justifies:
DEFINITION
[[e(w)]] = ||u|| is said to be the class norm of &(u).

This norm has the property: If |[t(u)|| # ||e(«)|| so €(u) # &(v) but not vice
versa: for £(u) # &(u') could well be ||E(u)|| = ||€(w')||. Infig. 1 all principal classes of
6= Af,g with the same class norm are marked with one and the same capital let-
ter. Different indices characterize different classes. All principal lattice points of
one and the same class are denoted by the same symbol. For instance the classes
b, = {b', —b'}, b, = {26%} and b = {—2b*} have the common capital letter A, the
principal points b!, —b!; 26%; —2b% have then the symbols A, Ay; Ay; As. The deno-
tation in fig. 3 must be interpreted analogously.

By means of the class norm the eigenvalues py, from (13) can be written as

uy = 2m)’(lo = pll>,  p = Pib", (14)

where h — pis the class of all vectorsu, — p Vu, €h.

(¢) N(X) as the number of principal classes ) contained in a certain convex domain
A-DcE"

DEFINITION
For A>0weintroduce in E"” the domains

D= {UEE”

1
<
IIUII\ZW}, (15a)

A-D= {UEE"

A
o< 55}, (15b)

A
p+)\-D={neE" ||U~pll<%} (15¢)

and call them the gauge domain, homothetical expansion of D with ) as a factor,
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and parallel translated domain along the vector p, respectively. According to [3],
proposition 1, formula (25),

N(X) = card{heHlh = (p + A- D)} (16)

is valid.

REMARK 4
Here we have the essential fact that either hc(p+A-D) or
hN(p+ A-D) =@, with X - Dbeing an £-invariant domain for all A>0.

By means of formula (16) we can ascertain N()) exactly, so far as ) is not too
big: we simply have to count all the principal classes h within the domainp + A - D
and of its boundary.

(d) The asymptotic estimation of N())
N(X) can be written as a finite sum of Weyl sums, and by means of Landau’s esti-
mation of the lattice remainder we get

N = %vol,,(D) - A"

1
+- > Vol 1 (DND*(0)) - &, - A1 4 QX2+ D)) (17)
gelny

Symbolsin (17)

(i) 6, = O or 1is Landau’s é6-symbol; according to proposition 4 in [3] the relation
8, = lisvalid for (o,s) € & if and only if there is a lattice vector tg € I" with the prop-
erty that (o,s + to) has a fixed point goe E", i.e. org + 5+ to = 1. (i) r = ord £ is
the number of elements of £. (iii) V*(o) := ker(oT — id) is the eigenspace of the
eigenvalue 1 of o7 if ocef, | :={oel|dim T*(c) =n—1}. (iv) vol,(D),
vol,_1 (D NY*(0)) are the n-, (n — 1)-dimensional volumes of the gauge domain
and of the cut domain D NY* (o) < E", respectively; according to the procedure in
[9], [3] or [4] we have to regard here also that the volume definition in E” is founded
on the normalisation

vol,(F(I™) =1, vol,.,(F(I"NV* (o)) =1, (18)

where F(I'™), F(I'"* NV*(0)) are the fundamental domains of the lattices I™,
I'* NY* (o), respectively.

2.2. EIGENVALUE BEHAVIOUR IN (11) WITH RESPECT TO THE GROUPS Af,g

ANDAL,.

(a) Thegroup® = AfJ
First we recall again (section 1.5(a)) the definitions of Azg =T+ (a,a) o % and
theterms £; I, I'*; (g;), (8"%); M1, M2 and above all of b, b, from .
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Eigenvalues and ezgenfunctlons of the A -automorphzc eigenvalue problem (11)

First we consider all A? -invariant 1fferent1a] operators P. The invariance con-
dition Ply o S] = P[y] o S VS = (0, 5) (see remark 3(c)) means for the coefficients
P and P" of Pthat

Poiol = PV, Pl =P, (19)

are valid for all o = (0})e L = {e,a} — interpreted with respect to the base
bas I' = {0; by, b} = {0;¢1,2¢;}. For o = e = (6;) (Kronecker’s symbol) egs. (19)
are identities. Forc = a = (ah) (see (2)) we obtain from (19) the set of all A2
invariant operators in the general form,

P = P''& + P32 + 4niP*8, — (2nP*)? /P2,

P P20, P? arbitrary, & = 5% and v =1"p. (20)
The assigned characteristic polynom then is
P(b) = =P — P22 4 4nP?y — (2nP?)? /P, v = yb", (21)

and the P-normofuis
lo|| = (P4} + P 2)1/2 relative to {0;b!,b%} . (22)

For P from (20) we solve now the Ajg—automorphic eigenvalue problem
Ply] + py = 0 according to the formulas (12), (13) and (21). To write the formula
(12) for h = by, b, from (7) we must be aware of the fact that

{e} o uehn

{e,a} ueh,.

rep(£/R(u))L = {

For yy (¢) and py, (i = 1,2),
w, (x) = ou(Ex) = pu(r), E = (e,0),

pp, = —P(2mhy) = (2m)* (P*14 — 2P’u; + (P)’/P?), (23)
where

u= uzbzef)l,uz even;
v, (2) = %wm ou(dD), A= (aa),
- %mm T oulor+a)),

py, = —P(21h,) = (2m)*(P'd + P — 2Pup + (P?)/PP), (24)
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where
u=ub'eh,.

If f;, b, run through the set § of all prmc1pal classes of A;g we obtain all eigenva-
lues iy and eigenfunctions y (r) of the A ¢-automorphiceigenvalue problem (11).

The number N () of eigenvalues

We obtain the asymptotic estimation of N(A) from (17). There we have for
B = A;g thedatan =2,r = 2;6, = 1, §, = 0. The latter is valid because (according
to section 2.1(d)) (e, 0) has a fixed point (choose t; = 0) but for (a, a) there is no
to e I'so that (a, a + to) has a fixed point. Furthermore we have

2
D= {n eEB?|Pvt + PPui< (21_7:) }

from (15a) and (22). In general D and A-D are ellipses. So we obtain
voly(D) = 1/(4nv P! - P22) if we consider the fact that the area vol,(F(I™)) of the
fundamental domain F(I™*) (F(I'*) spanned by b' and b?) is fixed to be equal to 1
(see (18)). The asymptotical expansion of N(\) for all P according to (20) is

1
gmv Pl . p22

If we investigate the important case that the metric fundamental tensor g’ from
(3b) defines the coefficients P* of P P .= gh* or, vice versa, P"* delivers the
metricin E?, we obtain P = 87 + 197 + ... and

N\ = A4+ 003,

_ 1 2/3
N()\)——47r/\ + O(X\7).
Then D and ) - D are circles.

Exact estimation of N()\) by counting the principal classes in X - D for small values
of A

This estimation could be carried out in general as in the case of P = gh* ie.
P= 82 + 103 (for the sake of simplicity, let P2 =0). Then \-D is the cn‘cle
vi+ v (/\/27r) with respect to the base {0; b!, b2} or (x!)? + (:2)* < (\/2n)* with
rCSpect to {0;e;,¢e2}. In fig. 1 we count the principal classes b, h, which are con-
tained in X - D and on the circumference of A - D (in general A - D are ellipses). The
result N()\) of the counting is represented in table 1 and fig. 2. Naturally N()) is a

step function. In table 1 the function values N()) are given just at the jump disconti-
nuities A = 27 - R, where R = 1/(x!)* + (x2)* is the radius of X - D but here we
understand (x!, x?) as a lattice point (x!,x?) eh; = I'*. The magnitude of the dis-
continuity of N on ) is equal to the number of principal classes on the periphery of

X - D. Figure 2 and table 1 represent also the comparison between the exact step
function N()) and its asymptotic estimation N ()) ~ A2 /4.
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(b) Thegroup ® = A? 531m

As for & = A g i1 ‘section 2. 2(a), we first estimate the A2 ,31m-invariant differen-
tial operators P by means of the invariance condltlon (19) with respect to
o= a, 3,7,96,( € L£. Easy algebraic calculations deliver all invariant operators,

o? o o?
P_c(au12+8v16v2+av2’)’ ¢>0, b=1"b;. (25)
The assigned characteristic polynom is
P(b) = —c(t? +vimp +13), ¢>0, b=ub", (26)

and therefore the P-normof v is
o]l = ve(w? + vivy +03)'/2. (27)

For the above P we solve the A2 n-automorphic eigenvalue problem
Ply] + pw = 0 according to (1 2 (132 and (26) Of course here for the principal
classes h we must take h, = &, by = &, hg = ¥ from (8). To establish formula (12)
for b = by, bi, he we must first con31dcr

£ {e} u ehy,
m(ul) = {e’ /B} ) rep(g/m(ul))L = {ev a"Y} if Ef)it 3
{e} £ U € b6 .

If we consider that for ue I'™* and for s = a, b, g,0,3 = 0 mod t (see section 1.5(b))
therelation ¢, (s) = 1istrue, we obtain

Whl(;)zlﬁ Ub.zo;
1

Wy (z) = 7 (P2u(er +62) (B) + P! =26 () + Pu2pt42) (1))

:%mm+mm+mmx

My = 12¢(mu)?,
where
u=+u(b' +b?)ebf, O<ueZ;

1
v (2) = 7 (Pugtt () + oo — )2 () T Pyt g2 (2)

+ (Puzbl —-(u;+uz)b2 (I:) + (p-(u|+u2)b'+u; b2 (;)
+ ‘P-(u,+uz)b‘+u252 (z)

Zsou(ms) s = (2m)c(u} + wiy +18) ,

aeE
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where u = u;b’ e ;.
If by, b and he run through the set $ of all prmcipal classes of Ap31m we obtain

all eigenvalues y5, and eigenfunctions yy (z) of the A? ;31m-aUtomorphic eigenvalue
problem (11).

The number N ()\) of eigenvalues

We consider the asymptotic estimation of N(A) in (17). Relative to & = Ap31m

comes out n=2, r=6; £ ={a,p,(} and 6, =063=06=1 because of
a,b,3 = 0 mod t. To ascertain £; and vol; (D N U* (o)) we have to establish the vec-
tor spaces U* (o) foro = e,a, 5,7, 6, (:

U*(a) = {6 = v(=2b' + b?)jveR}, dimV*(a)=1,
0*(8) = {o = v(b' +b})|veR}, dimV*(B) =1,
B*(y) = V*(6) = {0}, dim V*(v) = dim V*(6) =0,

0*(¢) = {o = v(b' — 26?)jveR}, dimV* () =1.
The equation of the circle D relative to the base {0;er,e} 1is
(x1)? + (x2)* = 1/(3en?); 2R = 2/(/3cn) is the diameter of D and therefore
vol, (D NW*(0)) = 2/(v/3cr) for o = e, B, ¢. So we obtain with regard to (18)
N()) = ol (D) - A2
+ i(voli (D NV*(a)) + voli (D NV*(F)) + voli (D NT*(¢))) - A
+ 0
1 1
= M4
12V3mc 2V3cr

A+ 003, ¢>0. (28)

REMARK
Because of (18) the fundamental domain F(e; x ¢3) (which is spanned by e¢;, ¢3)
is equal to v/3/2. This factor must be considered for the calculation of

1 V3

VOlz(D) = %7 .
Exact estimation of N()) by counting the principal classes in A - D for small values
of A

As in example 6= A; fig. 1, we now count the principal classes b, b3 , bs
from & = A ;31 10 the circle A - D: (x 1?2 4+ (x2)* < R? with R = A/(v/3cr) by means
of fig. 3for ¢ = 4/3. Theresult is shown in fig. 4 and table 2. Important is the follow-
ing remark about the structure of N(A) in (17) or (28).
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08 £L I 69 g9 19 65 LS £5 6 9 4 47 8¢ (XN
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4 6t wy 9% Ly iy <44 (487 £0°Y 12 16¢ $9°€ 19°¢ SE'E X+ N =
€'y (@e'D @isy) @re @y /ey (€¢) (1'v) /1y (0'v) (zr5'¢) (/L' (T'e) (ze'e) (x* %)
1z'ze 'l 9067 16 916 8LTT $9°61 1Ls1 se'el 1y ol 679 6¢ * ] /X = (X)N
9¢ v ot 14 (¥4 €T 1z 61 sl €1 01 8 9 14 1 (N
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Table 2

(=, x?) 0,00 (L1I/V)H 2.0 @2V G1V) G3IVH 40 G2V “4/vD 6,1V
R=+/xP 4 x¥ 0 1.15 2 231 3.10 3.46 4 4.16 4.62 5.03
A=27R 0 7.26 4 14.51 19.20 21.77 8 26.16 29.02 31.62
N(A) 1 2 4 5 7 8 10 12 13 15
IY(A) 0 0.60 1.81 2.42 423 5.44 7.26 7.86 9.67 11.49
N(A) 0 1.18 2.81 3.57 5.76 717 9.26 9.94 11.98 14.00

Ny =822, MO =N+

Table 3
e a B v 5 ¢
o e ¥ 6] ¢ 6
B ) e ¢ a v
v ¢ o ) e g
) J5} ¢ e ¥ @
¢ v 6 o B e

REMARK 6

The asymptotic of N()) is N(A) ~ cg - A" + ¢1 - M*71; ¢ - A" is said to be the prin-
cipal part and ¢; - ¥*~! the second part of N()). What is new about the asymptotic
of N(X) from (17) is just the fact that N()) contains not only a principal part but
also a second part.

_So we are able to give a comparison of exactitude between N()),
N(\) :=co-Xand N(A) :=co- X +¢; - V'~ For® = Afmm this is most impress-
ively showninfig. 4.

3. Concluding remarks

Already one year after the exposition about the black-body radiation which
was given by H.A. Schwarz during the course of the 1909 annual meeting of the
German Physical Society in Konigsberg, H. Weyl reflected on this important devel-
opment in a paper about the asymptotic behaviour of N(A) (see, e.g., [17], later
[18], etc.). Weyl’s asymptotic estimations extend only up to the so-called principal
term cp - A" N(A) ~ ¢p - A" (\: frequency bound, cp: constant, n: dimension of the
space). But already the conjecture of Weyl/Polya does concern the presumption
that there exists also a “second term” ¢; - A*~! with N(A\) ~ ¢g - A" + ¢; - A*71. Just
this conjecture is certified by formula (17) for invariant operators (with respect to
crystallographic groups or more general properly discontinuous groups).
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The knowledge of the second part c; - \*~! improves the asymptotic of N())
essentially.

We should also think about the theory of quantum chaos where oscillatory cor-
rections to Weyl-type terms are associated with periodic orbits (closed geodesic in
manifolds) or to the density of the orbits of crystallographic groups [14].

Glossary to figures 1-4

The Fraktur letters within the text or in formulas:
& H U b e b
appear in figures 1-4 in the old-fashioned style of German hand-writing, i.e. as:

Y% 0 4 n ¢
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